ISSN 2224-3577

International Journal of Science and Technology

©2013 IJST. All rights reserved

http://www.eiournalofsciences.org

Blood Sugar Lowering Effect of Moringa Oleifera Lam in Albino Rats

Edoga C. O.,¹ Njoku O. O.,² Amadi E. N.³, Okeke J. J.³

¹University of Nigeria, Nsukka, Enugu State, Nigeria. ²Federal University of Technology, Owerri, Imo State, Nigeria. ³Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

ABSTRACT

Medicinal plants constitute an important source of potential therapeutic agents for diabetes. In the study, we investigate the effects of Moringa oleifera (MO) lam on blood sugar of albino rats. Hyperglycemia was induced in rats using alloxan (120 mg/kg body weight, intraperitioneally,). Normoglycemia and hyperglycemic rats were treated with three different doses of the aqueous extracts, tolbutamide (positive control) and normal saline (negative control). The glucose level of the withdrawn blood samples was determined by 0-toluidine spectrophotometric method. The classes of chemical components of the aqueous extract produced a dose—dependent reduction (P<0. 05) in blood sugar levels of normoglycemic and hyperglycemic rats. In normoglycemic rats, the aqueous extract of MO (100,200 and 300 mg/kg) exhibited 23.14, 27.05 and 33.18 % reduction respectively of the blood glucose levels within 6 hours of administration, while tolbutamide (200 mg/kg) showed 33.29% (P<0. 05) reduction. In alloxan induced diabetic rats, the aqueous extract of Moringa oleifera leaves do posses a significant, dose-dependent hypoglycemic activity in normoglycemic and alloxan-induced diabetic rats and almost as effective as the standard drug (tolbutamid.). This also supports its use in folkloric management of diabetes.

Keywords: Moringa oleifera, Diabetes, antidiabetic activity, Rattus norvegicus.

1. INTRODUCTION

Diabetes is a chronic metabolic disorder with impaired glucose tolerance and high risk of cardiovascular disease¹. Many oral synthetic antidiabetic agents have been developed². Hyperglycemia can be handled initially with oral agents and insulin therapy, which sometimes required achieving targeted glycemic levels. However, these synthetic agents produce some serious side effects and relatively expensive for developing countries³.

Therefore, searching for effective, low cost and less side effect hypoglycemic agents is important. Herbal remedies for diabetes are known since ancient times in different societies. Scientific data supported the antidiabetic effects of some medicinal plant⁴.

Trigonella foenum-graecum seeds have been shown to possess hypoglycemic properties in experimental animals⁵ and in diabetic patients⁶. *Allium sativum⁷*, *Vernomonia amydalina⁸* and *Anacardium occidentale⁹* extracts decreases the blood sugar levels in alloxan diabetic rats and rabbits.

Moringa oleifera (MO) Lam (drumstick tree and horse radish tree) belongs to *Moringacea* family which accounts 14 species. MO has anti-cancer¹⁰ anti-inflammatory¹¹ and thyroid status regulator¹² efficacies and researchers reported its hypoglycemic potential¹³.

2. MATERIALS AND METHODS

Plants Extract: The *Moringa oleifera* leaves were harvested from Nsukka. The leaves were dried in shade and pounded to yield a powder. The resulting powder was dispersed in 1%

solution of sodium metabisulphate for 24 hours. The viscous mixture was sieved with a muslin cloth. Acetone was then added to the viscous extract until precipitation was complete. The whitish precipitate was recovered and dried in a desiccator containing calcium chloride. Standard solution of the extracts was made in Tween 80 solution.

Reagents: The reagents were sourced commercially. Glucose, tolbutamide. sodium ethlyenediaminetetracetate, ortho-toluidine were products of May and Baker while glacial acetic acid, trichioroacetic acid, alloxan monohydrate, thiourea were products of Sigma, St. Lious, MO, USA.

Animals: Albino rats of both sexes weighing 80-170g were used. They were housed in white metal cages and were kept under standard conditions for 14 days with free access to water and feed before the experiment commenced. They were bred in the animal house of Department of Zoology, University of Nigeria, Nsukka, Nigeria.

Induction of Experimental Diabetics: Diabetes was induced by slow intraperitioneal injection of 1% solution of alloxan (120 mg/kg body weight) dissolved in distilled water and administered within few minutes of its preparation. The diabetic state was confirmed on the seventh day by the blood glucose determination¹⁴.

Investigation of the hypoglycemic effect of the extract: The animals were fasted for 12 hours but were allowed access to water before and during the experiment. The blood glucose level was monitored before and after alloxanization by withdrawing blood from the tail tipping method¹⁵. At the end of the fasting, taken as the zero time (0 hr). blood was withdrawn from the animals tail vein and the sugar level

©2013 IJST. All rights reserved

http://www.ejournalofsciences.org

determined by 0- toluidine method¹⁶. Only animals with blood glucose levels above 100 mg/dl were used. Normal rats were then divided into 5 groups (I-V) of six animals in each group. Group I received normal saline (2m1/kg body weight) while group II received 200mg/kg body weight of tolbutamide. Group III-V received 100, 200 and 300 mg/kg body weight of the extract respectively. The diabetic rats were also divided into 5 groups on the same pattern and the experiment was repeated with them. Blood samples were drawn from the tail vein at 0, 1, 3 and 6 hours after the administration of the extract.

Statistical analysis: Data obtained were reported as mean \pm SEM. The statistical significance of the change in blood glucose level was determined by the students't-test. The probability value of less than 0.05 was considered as the level of significance.

3. RESULTS AND DISCUSSION

The extract showed a dose dependent effect since more pronounced hypoglycemic effect was produced when the dose was increased as shown in table 1 and 2. In alloxan induced diabetic rats, the extract produced significant hypoglycemic effect, giving a percentage (p<0.05) reduction in blood sugar levels of 31.22, 40.69 and 44.96% for 100, 200 and 300 mg/kg dosed of the extract at 6 hrs of administration while tolbutamide exibited 46.75% (P<0.05) reduction of the blood sugar levels at the same time intervals as shown in table 1. In the normoglycemic rats, the extract showed a significant (P<0.05) decrease (table 2), which was dose dependent.

From the obtained results, we can conclude that *Moringa olejfera* is comparable with the reference drug tolbutamide. The comparable effect of MO with tolbutamide on both normoglycemic and hyperglycemic animals may suggest similar modes of action. Alloxan monohydrate destroys the pancreatic B- cells¹⁵ and the extract lowered blood sugar levels in alloxanized rats, an indication that the extract has extra pancreatic effects.

This resultant effect of *Moringa oleifera* extract was due to its active constituents, which has neither been known nor the extract mode of action of the hypoglycemic effect determined. Further studies can be done to identify the active principles responsible for the hypoglycemic effect.

Dose of Drug (Mg/Kg)	Blood Glucose Lo		Maximum Reduction %		
	0h	1h	3h	6h	
100	105.05 ± 6.90	98 ± 5.80	81 ± 5.6	72.25 ± 3.4	31.22
200	101.67 ± 1.40	90.3 ± 1.82	78.67 ± 1.70	60.34 ± 1.14	40.69
300	103.70 ± 0.84	93.3 ± 1.17	82 ± 1.53	57.08±1.11	44.96
200 Tolbutamide	106.30 ± 3.01	83 ± 3.01	64.69 ± 6.72	56.60 ± 6.90	46.75
2 (Ml/Kg) Normal Saline	117.67 ± 6.20	117 ± 5.90	115.3 ± 7.21	115.01 ± 6.13	2.26

Table 1. Effect of Moringa oleifera extract on blood glucose levels of Alloxan-diabetic rats.

Values are expressed as Mean ± SEM; P<0.05; n=5

Table 2: Effect of Moringa oleifera extract on blood glucose levels of normal rats

Dose of Drug (Mg/Kg)	Blood Glucose Level	Maximum Reduction %			
	0h	1h	3h	6h	
100	88.67 ± 4.20	85.35 ± 2.50	79.09 ± 2.94	68.15 ± 4.31	23.14
200	84.00 ± 1.10	81.30 ± 3.08	77.15 ± 4.36	61.28 ± 2.32	27.05
300	90.07 ± 3.31	78.25 ± 1.35	63.59±1.49	57.08 ± 1.38	33.18
200 Tolbutamide	90.05 ± 1.10	75.20 ± 1.63	72.67 ± 2.81	60.07 ± 3.05	33.29
2 (Ml/Kg) Normal Saline	82.91 ± 1.61	82.63 ± 2.50	81.35 ± 1.42	81.25 ± 2.23	2.00

Values are expressed as Mean ± SEM; P<0.05; n=5

Ist

©2013 IJST. All rights reserved

REFERENCES

- Schnell O. Standle E. Impaired glucose tolerance, diabetes, and cardiovascular disease. Endocr. Pract. 2006, 16-19
- [2]. Defronzo R.A, Pharmacologic therapy for types 2 diabetes mellitus. Ann. intern. Med. 1999,281-303.
- [3]. Rubin R.J. Altman W.M. Mendelson D.N. Health care expenditures for people with diabetes mellitus, 1992. J. Clin. Endocrinol. Metab. 1994, 78: 809
- [4]. Grove J.K., Altman W.M., Medicinal Plants of India with antidiabetic potential. J. Ethnopharmacol. 2002; 81:81-100.
- [5]. Ribess G., Goste, C.D. Loubatieres-Marian, M.M., Sauvarie, Y., Bacc OU .J.C. (1987). Hypoglycemic activity of the aqueous extract of Trigonella foenumgraecum seeds in experimental animals. Phylother Reg. 1, 38.
- [6]. Sharma, R.D., Raghuram, T.C. (**1990**). Nutritional evaluation of the seed extract of trigonella foenum-graecum in diabetic patients. Phytother. Res. 10, 731.
- [7]. Sharaf, A.A., Hussevi A.M. Maisour, M.Y. (**1963**). Studies on the antidiabetic effects of some plants. Planta medica. 11,259-268.

- [8]. Akah, R.A., Okafor, C.L. (1992). Blood sugar lowering effects of Vernonia amydalina in an experimental Rabbit model. Phylother. Res. 6:171-173.
- [9]. Ezugwu, C.O., Okonta J.M. and Esimond C.O. (2001). Blood sugar lowering effect of Anacardium occidentale leaf in an experimental rat model. J. Nat. Remed.1(1):60-63.
- [10]. Guevara A.P., Vargas C., Sakural H., Fujiwara Y., Hashimoto K. Maoka T., Kuzuka M., Ito Y., Tokuda H., Hishino H. An antitumor promoter from *Moringa oleifera* Lam. *Mutat. Res.* **1999; 440: 181-188.**
- [11]. Kurma S. R., Mishra S. H. Anti-inflammatory and hepatoprotective activities of fruits of *Moringa Pterygosperma* Gaerth. *Ind. J. Nat. Prod.* 1998; 14:3-10.
- [12]. Talhiliani P., Kar A. Role of *Moringa oleifera* leaf extract in the regulation of thyroid hormone status in adult male and female rats. *Pharmacol. Res.* 2000; 41: 319-323.
- [13]. Kar A., Choudhary B.K., Bandyopadhyay N. G. Comparative evaluation of Hypoglycemic activity of some Indian medicinal plants in alloxan diabetic rats. J. *Ethnopharmacol.* 2003; 84:105-108.
- [14]. Creutzfelat W., Soling H. (1961). Oral treatment of diabetes. Springer-verlag. Berlin, 50.
- [15]. Creutzfelat W.; Soling H. (1961). Oral treatment of diabetes. Springer-verlag. Berlin, 50.